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The open-loop Threshold Model, proposed by Tong [23], is a
piecewise-linear stochastic regression model useful for modeling con-
ditionally normal response time-series data. However, in many appli-
cations, the response variable is conditionally non-normal, e.g. Pois-
son or binomially distributed. We generalize the open-loop Thresh-
old Model by introducing the Generalized Threshold Model (GTM).
Specifically, it is assumed that the conditional probability distribution
of the response variable belongs to the exponential family, and the
conditional mean response is linked to some piecewise-linear stochas-
tic regression function. We introduce a likelihood-based estimation
scheme for the GTM, and the consistency and limiting distribution
of the maximum likelihood estimator are derived. A simulation study
is conducted to illustrate the asymptotic results.

1. Introduction. The threshold autoregressive (TAR) model by Tong
[22, 23] is perhaps the most popular nonlinear time-series models. Its exten-
sion that incorporates covariates is known as the open-loop threshold model
(Tong [22]) which is a piecewise-linear stochastic regression model. While
the model formulation of the threshold models does not impose the inno-
vations to be normal, normality is generally the implicit assumption given
that the threshold models specify a piecewise conditional mean structure.

However, in many applications including time-series response consisting
of counts, the response variable is conditionally non-normal, e.g. Poisson or
binomially distributed. Motivated by our recent works on modeling plague
in Samia, Chan and Stenseth [17] and Samia et al. [18], we generalize the
open-loop threshold model by introducing the Generalized Threshold Model
(GTM). Specifically, it is assumed that the conditional probability distribu-
tion of the response variable belongs to the exponential family, and the
conditional mean response is linked to some piecewise-linear stochastic re-
gression function through a known and invertible link function. On the other
hand, the GTM is an extension of the generalized linear model (Nelder and
Wedderburn [14], McCullagh and Nelder [13]), in which both non-normal re-
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sponse distributions and piecewise linearity are accommodated. Hence, the
link function is a natural device to remove any inherent constraints on the
conditional mean function of a response variable, so that on the scale of
the link function, the mean response is a piecewise-linear stochastic regres-
sion function. Note that if the link function is not the identity function, the
conditional mean function of a GTM is generally piecewise nonlinear.

Threshold models may be estimated by various methods including con-
ditional least squares and conditional maximum likelihood estimation. The
conditional mean function of a threshold model is generally discontinuous,
resulting in non-standard asymptotics for the estimators. Chan [3], Chan and
Tsay [4], and Qian [16] established the asymptotic behavior of the threshold
estimator in the threshold autoregressive models. Hansen [7] and Koul, Qian
and Surgailis [9] studied the limiting behavior of the threshold estimator in
the context of threshold regression models. We extend the previous asymp-
totic work to the GTM, where the vector of covariates may also contain lags
of the response variable. However, because the conditional mean function
of a GTM is generally piecewise nonlinear on the original scale, the ensu-
ing complexity requires very different sets of regularity conditions and much
innovations in the proof techniques than previous work for the threshold
models.

The organization of the paper is as follows. Section 2 describes and for-
mulates the model, namely the GTM. Section 3 presents the large-sample
properties (i.e. consistency and limiting distribution) of the maximum like-
lihood estimator for the GTM. Section 4 conducts a simulation study that
demonstrates the asymptotic theory for the GTM. Section 5 concludes by
briefly discussing real motivating examples where the GTM is proven to be
useful, and by discussing some related research problem. The proofs of the
results stated in Section 3 are referred to Appendix A.

2. Model Formulation. Let A = {at, t = 1, · · · , T} be a positive pro-
cess that may be the weights of the data cases, and letX = {xt, t = 1, · · · , T}
be a p-dimensional vector covariate process, where xt consists of zt and its
lags, as well as some other covariates and their lags. The vector covariate
xt may also contain lags of the response variable. Denote by x̃t the part
of xt without the lags of the response variable. Define Ft as the σ-algebra
generated by ys−1, xs, s ≤ t. Let yt be a random variable whose conditional
probability density function given A and Ft, belongs to the (one-parameter
canonical) exponential family, and takes the form

(2.1) f(yt; γt, at, φ) = exp

[

1

φat
{ytγt − b(γt)} + c (yt;φat)

]

,
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where γt is the natural canonical parameter and φ is a dispersion parameter
that is assumed to be known. The Generalized Threshold Model (GTM)
specifies that conditional on A and Ft, the conditional mean of yt, denoted
by µt, is linked to some piecewise-linear function

(2.2) g(µt) =

{

β
′

1xt, if zt−d ≤ r

β
′

2xt, if zt−d > r;

t = 1, · · · , T ; and variances given by φatv(µt), where v(.) is a specified
variance function. The function g is a known invertible smooth link function
with its inverse function denoted by g−1. We assume that on the link scale,
the model is discontinuous; i.e. the regression parameters are such that β1 6=
β2, β1 and β2 being p×1 vectors. The parameter r is known as the threshold
and d is a non-negative integer referred to as the delay or threshold lag. For
simplicity, we consider a two-regime model, but it can be easily extended to
a multiple-regime model. The analysis of the above GTM is conditional on
the observed a’s, x̃’s, and F1. (We assume the initial values of y defining F1

are known.)
The parameter space Ω is <2p × < × {0, 1, · · · ,D} , where D is a known

upper bound of d, the delay parameter. A general parameter in the pa-
rameter space Ω is denoted by θ = (β′1, β

′
2, r, d)

′ and the true parameter
θ0 = (β′1,0, β

′
2,0, r0, d0)

′. The (conditional) log likelihood, in canonical form,
is given by

(2.3) l(θ) =
T

∑

t=1

1

φat
{ytγt − b(γt)} + c (yt;φat) ,

where ḃ(γt) = ∂b(γt)
∂γt

= µt, and b̈(γt) = ∂2b(γt)
∂γ2

t

= v(µt); see McCullagh

and Nelder [13] and Firth [6]. Henceforth, b(γt) is assumed to be a twice-
differentiable function with positive second-order derivative, i.e. b(γt) is
strictly convex and ḃ(γt) is a strictly monotone increasing function. In par-
ticular, since µt is a one-to-one function of γt, we can use µt as the parameter
such that the log likelihood defined by (2.3) can be shown to equal

(2.4) l(θ) =
T

∑

t=1

− 1

2φ
dt(yt;µt) + `t(yt),

where dt(y;µ) = −2
∫ µ
y

y−u
atv(u)du is the deviance measure of fit, and `t(µt) is

the log likelihood for a single observation yt given A and Ft; see Breslow
and Clayton [2].
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Each distribution belonging to the exponential family has a unique canon-
ical link function η = ḃ−1 for which η(µt) = γt = β

′

1xtI(zt−d ≤ r) +
β

′

2xtI(zt−d > r), where I(.) is the indicator function. Recall that as a result
of the monotonicity of ḃ, the canonical parameter γt is a monotone function
of µt. The canonical parameter space is generally either the real line, or a
one-sided infinite interval, or an interval, depending on the distribution of
the exponential family under consideration. In the case that the canonical
parameter space is a proper subset of the real line, using the canonical link
in the model is not attractive, in part because it puts restrictions on the
parameter βi, i = 1, 2. To avoid this issue, we shall assume that the link
function (canonical or not) is such that the parameter βi, i = 1, 2, is uncon-
strained and that γt = w{β′

1xtI(zt−d ≤ r) + β
′

2xtI(zt−d > r)}, where w is
an increasing function. It is easy to check that w = η ◦ g−1, where η is the
canonical link function and g is the link function considered in the model.
Therefore, the log likelihood can be written as the sum of the log likelihoods
of the two generalized linear submodels (in the lower and upper regimes) up
to an additive constant, i.e.

l(θ) =
T

∑

t=1

Mβ1
(yt; at, xt)I(zt−d ≤ r) +Mβ2

(yt; at, xt)I(zt−d > r)

+ c(yt;φat),

where Mβi
(yt; at, xt) = 1

φat
{w(β

′

ixt)yt − b ◦ w(β
′

ixt)}, i = 1, 2.
Samia, Chan and Stenseth [17] studied the specific case where the non-

negative discrete response variable equals zero in the lower regime; meaning
that if the threshold is not met, the response is zero. While the latter model
is of general applicability for analyzing epidemiological time series and other
time-series data (Samia, Chan and Stenseth [17] and Stenseth et al. [20]),
yet, we propose a more general form of the GTM that is obtained by (i)
removing the restrictions on the positivity of the inverse link function and
the discreteness and non-negativity of yt, (ii) partitioning the sample space
of (possibly vector-valued) zt−d into a finite set of regions (often referred
to as regimes), say Ri, i = 1, · · · ,m and (iii) requiring that g(µt) equals a
linear function, whenever zt−d ∈ Ri, i = 1, · · · ,m.

3. Large-Sample Properties of the Estimator. We first recall the
notion of ϕ-mixing property. A stationary process {Wt} is said to be ϕ-
mixing if there exists a sequence of numbers {ϕ(k)} with ϕ(k) → 0 as
k → ∞, and such that for any events E1 in the σ-algebra generated by
{Wt, t ≤ j} and E2 in the σ-algebra generated by {Wt, t ≥ j + k},

|P (E1 ∩E2) − P (E1)P (E2)| ≤ ϕ(k)P (E1).(3.1)
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See Billingsley [1, §20] and Doukhan [5, p. 3 and §1.3] for further discussion
of ϕ-mixing.

In order to study the asymptotic properties of the estimator, the following
set of assumptions will be required later. All expectations in the sequel are
taken under the true model, unless stated otherwise.

(C1) The regression parameters are such that β1,0 6= β2,0. The cumulant
function b(γt) is strictly convex.

(C2) The process {(at, x
′

t, yt)
′} is stationary ergodic, having finite second

moments.
(C3) The marginal probability density function of {xt} exists and is positive

everywhere. Also, the process Z = {zt} admits a marginal probabil-
ity density function π(.) that is continuous at the true threshold r0
which is an interior point of the range of z, and π(r0) > 0. The joint
marginal probability density functions πij(., .) of (zi, zj)

′
, for all i 6= j,

are assumed to be positive everywhere and uniformly bounded. Also,
at is uniformly bounded away from 0 and +∞.

(C4) The parameter vector θ = (β
′

1, β
′

2, r, d)
′
lies in a compact space Ω1 ⊆ Ω,

and Ω1 contains the true parameter θ0. The regression parameters
βi, i = 1, 2 are interior points of Ω1.

(C5) Let | · | denote the absolute norm of the enclosed expression. Let
Mβ(at, xt, yt) = 1

φat
{γtyt − b(γt)} be the log likelihood for a single ob-

servation, namely yt, where γt = w(β
′
xt) = η ◦ g−1(β

′
xt), η being the

canonical link function and g the link function considered in the model.
There exist a square-integrable function w̃ and an integrable function
m̃ such that |w(β

′
x) − w(β∗

′
x)| ≤ w̃(x)|β − β∗| and |b ◦ w(β

′
x) −

b ◦ w(β∗
′
x)| ≤ m̃(x)|β − β∗|, for every β, β∗, and x. Hence, if (C2)

and (C3) hold, then there exists an integrable function Λ(at, xt, yt)
such that |Mβ(at, xt, yt) − Mβ∗(at, xt, yt)| ≤ Λ(at, xt, yt)|β − β∗|, for
every β, β∗, at, xt, and yt.

(C6) There exist τ > 0 and M > 0 such that, for all zt−d ∈ [−τ, τ ], E{Λ(at,
xt, yt)

2|zt−d} ≤M.
(C7) There exists a ∆ > 0 such that the process [{Λ(at, xt, yt), zt−dI(−∆ ≤

zt−d ≤ ∆)}′
] is ϕ-mixing with exponentially decaying mixing coeffi-

cients; i.e. for all k ≥ 0, |ϕk| ≤ cρk for some c > 0 and 0 ≤ ρ < 1.

(C8) The conditional distribution of (at, x
′

t)
′
given zt−d = z is weakly con-

tinuous in z.

Remark 1. Without the assumption of
{

(at, x
′

t, yt)
′
}

being stationary

ergodic, the consistency of the estimators may not be true as shown in Ex-
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ample 1 of Chan [3] which is a special case of a GTM with identity link and
normal conditional distributions. The ϕ-mixing condition for the process

[{Λ(at, xt, yt), zt−dI (−∆ ≤ zt−d ≤ ∆)}′
]

can be relaxed to a ρ-mixing con-

dition; it is an essential condition for showing that the maximum likelihood
estimator of the threshold has an Op(1/T ) convergence rate. The assump-
tion on the parameter space being compact can be removed or weakened
in several cases of the GTM, as shown in the following Lemma 3.1. It is
shown in Lemma 3.1, that the maximum likelihood estimator of the GTM
is stochastically bounded in the case of a GTM with canonical link function
and under a very mild condition on b̈(.) that is generally true in all com-
monly used distributions of the exponential family. The proof of Lemma 3.1
is deferred to Appendix A.

Lemma 3.1. Assume that (C1)–(C3) hold. Assume, furthermore, that
the link function considered in the model is the canonical link and the second
derivative of the cumulant function b(.) is such that either b̈(x+v) ≥ b̈(x) for
all x and all v ≥ 0 or b̈(x−v) ≥ b̈(x) for all x and all v ≥ 0. Then, there exists
τ > 0 such that, for T sufficiently large, the maximum likelihood estimator θ̂T

of the parameter vector θ lies in a compact space Ω1 = {θ ∈ Ω : |θ−θ0| ≤ τ}
almost surely.

The following Theorem 3.1 states the consistency of the maximum like-
lihood estimator θ̂T = (β̂

′

1, β̂
′

2, r̂, d̂)
′
, the proof of which is deferred to Ap-

pendix A.

Theorem 3.1. Assume that (C1)–(C5) hold. Then, the maximum like-
lihood estimator θ̂T = (β̂

′

1, β̂
′

2, r̂, d̂)
′
is strongly consistent; that is, θ̂T → θ0

almost surely.

Because of Theorem 3.1, it follows from the discreteness of the delay pa-
rameter that, for all sufficiently large T, d̂ = d0 with probability 1. Thus,
without loss of generality, we may and shall assume henceforth that the
delay parameter is known. Also, we write d for d0. The parameter d is, fur-
thermore, deleted from θ. We next show in Theorem 3.2 that the maximum
likelihood estimator of the threshold is T -consistent, whose proof is deferred
to Appendix A. The Op(1/T ) fast convergence rate is due to the discontinu-
ity of the conditional mean function; see Chan [3], Chan and Tsay [4], and
Hansen [7].

Theorem 3.2. Assume that (C1)–(C8) hold. Then the maximum like-
lihood estimator of the threshold is such that r̂ = r0 + Op(1/T ), where T is
the sample size.
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Define δ = (β
′

1, β
′

2)
′, θ = (r, δ

′
)′. Let l(θ) be the log likelihood defined

by (2.3), and let δ̂r = arg maxδ l(θ), for a fixed r. The log likelihood function
of the GTM defined by (2.2), is given by

l(θ) =
T

∑

t=1

1

φat
{w(β

′

1xt)yt − b ◦ w(β
′

1xt)}I(zt−d ≤ r)

+
1

φat
{w(β

′

2xt)yt − b ◦ w(β
′

2xt)}I(zt−d > r) + c(yt;φat)

=
T

∑

i=1

Mβ1
(yt; at, xt)I(zt−d ≤ r) +Mβ2

(yt; at, xt)I(zt−d > r)

+c(yt;φat),

where Mβi
(yt; at, xt) = 1

φat
{w(β

′

ixt)yt − b ◦ w(β
′

ixt)}, i = 1, 2.

Let ψδ(yt; at, xt) = {Ṁ ′

β1
(yt; at, xt)I(zt−d ≤ r0), Ṁ

′

β2
(yt; at, xt)I(zt−d >

r0)}
′
,

where Ṁβi
(yt; at, xt) = ∂

∂βi
Mβi

(yt; at, xt), i = 1, 2. Define
(3.2)

ΨT (δ) =
1

T

T
∑

i=1

{Ṁ ′

β1
(yt; at, xt)I(zt−d ≤ r̂), Ṁ

′

β2
(yt; at, xt)I(zt−d > r̂)}′

.

The maximum likelihood estimator δ̂ = δ̂r̂ is a root of the estimating
equation ΨT (δ) = 0. On the other hand, for the GTM defined by (2.2) with
known true threshold and delay, the maximum likelihood estimator equals
δ̂r0

which is a root of the following estimating equation

(3.3)
1

T

T
∑

i=1

{Ṁ ′

β1
(yt; at, xt)I(zt−d ≤ r0), Ṁ

′

β2
(yt; at, xt)I(zt−d > r0)}

′
= 0.

The following conditions will be referred to in the sequel.

(D1) Let Ṁβ(y; a, x) = ∂
∂βMβ(y; a, x). The domain of δ is an open subset of

the Euclidean space, in which βi 7→ Ṁβi
(y; a, x) is twice continuously

differentiable for every (y; a, x), i = 1, 2.
(D2) Let | · | denote the absolute norm of the enclosed expression. Let

M̈β(y; a, x) = ∂2

∂β2Mβ(y; a, x). For some neighborhood of βi,0, say Vi, i

= 1, 2, there exist two functions m1(y; a, x) and m2(y; a, x) such that
|Ṁβ(y; a, x)| ≤ m1(y; a, x) and |M̈β(y; a, x)| ≤ m2(y; a, x) for all y, a, x,
and β ∈ V1 ∪ V2. There exist M1,M2 > 0 and ∆ > 0 such that
E{mi(yt; at, xt)|zt−d} ≤Mi for all zt−d ∈ [−∆,∆] and for i = 1, 2.
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(D3) For some neighborhood of βi,0, say Vi, i = 1, 2, the third-order partial
derivatives of Mβ(y; a, x) with respect to β are dominated by a fixed
integrable function m3(y; a, x) for every β ∈ V1 ∪ V2.

(D4) E{M̈β1,0
(yt; at, xt)I(zt−d ≤ r0)} and E{M̈β2,0

(yt; at, xt)I(zt−d > r0)}
exist and are nonsingular, where
M̈βi,0

(yt; at, xt) = ∂2

∂β2
i

Mβi
(yt; at, xt)|βi=βi,0

, i = 1, 2, and the expecta-

tion is taken under the true model.

Let l(θ) be the log likelihood of θ and let l(., r) be globally maximized at
δ̂r = (β̂

′

1,r, β̂
′

2,r)
′
. The estimate of the threshold parameter r can be obtained

by maximizing the profile log likelihood function l(δ̂r, r) of r. The optimiza-
tion is conducted over the finite set of observed values of the threshold
variable zt−d. This is because, for a fixed delay d, the profile log likeli-
hood function is constant between two consecutive sample percentiles of the
threshold variable zt−d. As a result of the strict convexity of b(γt), the global
maximum likelihood estimators β̂1,r and β̂2,r for a fixed threshold r (and a
fixed delay d) can be attained by an exhaustive search with respect to the
threshold variable zt−d, subject to adequate number of data points in both
regimes, e.g. number of data points in each regime is greater than p + 1,
where p is the length of each of the regression coefficients β1 and β2.

We first state and prove the following two lemmas which are instrumental
in the proof of the limiting distribution of the threshold estimator.

Lemma 3.2. Assume that (C1)–(C8) and (D1)–(D4) hold. Then, for all
K > 0,

sup
|r−r0|≤

K
T

|β̂i,r − β̂i,r0
| = op(1/

√
T ), i = 1, 2.

We now consider the limiting behavior of the normalized profile log like-
lihood. Define for κ ∈ <,

(3.4) l̃(κ) = l(δ̂r0+ κ
T
, r0 + κ/T ) − l(δ̂r0

, r0).

Lemma 3.3. Assume that (C1)–(C8) and (D1)–(D4) hold. Then, for all
K > 0,

sup
|κ|≤K

|l̃(κ) − {l(δ0, r0 + κ/T ) − l(δ0, r0)}| = op(1).

Next, we shall describe the limiting distribution of the threshold estima-
tor r̂. Consider two independent compound Poisson processes {l̃1(κ), κ ≥
0} and {l̃2(κ), κ ≥ 0}, both with rate π(r0), l̃1(0) = l̃2(0) = 0 a.s. and
the distributions of jump being given by the conditional distribution of
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ξ1=̇Mβ2,0
(yt; at, xt) −Mβ1,0

(yt; at, xt) given zt−d = r−0 and the conditional
distribution of ξ2=̇Mβ1,0

(yt; at, xt) − Mβ2,0
(yt; at, xt) given zt−d = r+0 , re-

spectively. [We work with the left continuous version for l̃1(.) and the right
continuous version for l̃2(.).] The former conditional distribution is the lim-
iting conditional distribution of ξ1 given r0 − δ < zt−d ≤ r0 as δ ↓ 0 and
the latter that of ξ2 given r0 < zt−d ≤ r0 + δ as δ ↓ 0. We now state the
following theorem.

Theorem 3.3. Assume that (C1)–(C8) and (D1)–(D4) hold. Then,
({l̃(−κ), κ ≥ 0}, {l̃(+κ), κ ≥ 0}) converges weakly to ({l̃1(κ), κ ≥ 0}, {l̃2(κ),
κ ≥ 0}) in D[0,∞) × D[0,∞), the product space being equipped with the
product Skorohod metric. Assume, furthermore, that ξ1 and ξ2 are continu-
ous random variables. Then, the two random walks associated with the com-
pound Poisson processes tend to −∞ a.s. and hence, T (r̂ − r0) converges
weakly to M− where [M−,M+) is the a.s. unique random interval of all κ
at which l̃1(−κ)I(κ < 0) + l̃2(κ)I(κ ≥ 0) attains its global maximum.

Remark 2. We assume that ξ1 and ξ2 are continuous random variables
to ensure that l̃1(−κ)I(κ < 0)+ l̃2(κ)I(κ ≥ 0) attains its global maximum at
the a.s. unique random interval [M−,M+). In fact, this continuity assump-
tion is generally true in many cases (e.g. the Poisson distribution.)

The super-consistency of the threshold parameter estimator, i.e. theOp(1/
T ) convergence rate, implies that under some regularity conditions, the
threshold estimator is asymptotically independent of β̂i, i = 1, 2, which
is the content of Theorem 3.4 below. Moreover, we show that β̂1 and β̂2

are
√
T -consistent and whose asymptotic joint distribution is identical to

that for the case of known true delay and threshold, i.e. obtained from fit-
ting the associated generalized linear model (GLM) defined by the equation
g(µt) = β

′

1xtI(zt−d ≤ r0) + β
′

2xtI(zt−d > r0).

Theorem 3.4. Assume that (C1)–(C8) and (D1)–(D4) hold. Then,

δ̂r̂ − δ0 = Op(1/
√
T ),

and the sequence
√
T (δ̂r̂ − δ0) is asymptotically normal with mean zero and

covariance matrix Σ = E(ψ̇δ0)
−1E(ψδ0ψ

′

δ0
)E(ψ̇δ0)

−1.

Remark 3. As a result of Σ being a block diagonal matrix, the regres-
sion parameter estimators β̂1 and β̂2 are asymptotically independent of each
other.
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4. Simulation Study. We conduct a simulation study to illustrate the
asymptotic results of the GTM defined by (2.2). Conditionally independent
observations of yt are generated from Poisson distributions with mean µt

given by

(4.1) log(µt) =

{

β10 + β11xt, if zt−d ≤ r

β20 + β21zt−1, if zt−d > r;

t = 1, · · · , T. The parameters d and r are taken to be 0 and 0.38, respectively.
The regression coefficients are fixed at β10 = 0.4, β11 = 1, β20 = 1.5, and
β21 = 0.5. The threshold variable zt is generated as a series that follows an
AR(2) process given by zt = wt+0.907

2.37 , where wt = 0.9255wt−1−0.2736wt−2+√
0.02125 ηt, and ηt denotes a series of uncorrelated normal random variables

with zero mean and variance 1, truncated between -3 and 3. Note that zt
is bounded between 0 and 1. The covariate xt is generated as a series of
independent Uniform(0, 1) random variables. The sample sizes used are
50, 100, and 200, and for each sample size, the results are based on 1000
replications.

The estimators of the threshold parameter r and the delay parameter d
are obtained by maximizing the log likelihood of the estimated GTM, with
the delay being an integer between 0 and 2, and the search of the threshold
done based on an exhaustive search with respect to zt−d, where each regime
has at least 4 data points. For given estimates of the threshold and the
delay, the associated generalized linear submodels are estimated using the
glm function in R; see Venables and Ripley [25].

Table 1 gives the percentage of times the threshold delay was estimated to
be equal to the true value 0 and the percentage of times optimization failed.
We also report in Table 1 the sample means, bias, and standard deviations
of the estimates, and the empirical coverage probabilities of the regression
parameters. All of the latter estimates and probabilities reported in Table 1
are based on fitting the GTM with the delay fixed at its true value 0. The
empirical coverage probabilities are based on the 95% confidence intervals
of the corresponding regression parameters.

In general, the percentage of times the threshold delay was estimated
to be equal to 0, increases with larger sample size. The percentage of times
optimization failed decreases with larger sample size. The standard deviation
and the bias of the estimators generally become smaller with larger sample
size, confirming the consistency results discussed previously. Moreover, the
empirical coverage probabilities get generally closer to the nominal coverage
probabilities with increasing sample sizes.
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The Q-Q plots of the β̂’s for sample sizes 100 and 200 confirm the asymp-
totic normality of the regression estimators in the associated generalized
linear submodels, see Figure 1 where we show the results for T = 100, as
the Q-Q plots for T = 200 are similar. For T = 50, the Q-Q plots show
some departure from normality, which can be circumvented by restricting
the search of the threshold to be between two predetermined percentiles of
the threshold variable; say, between the 20th and 80th percentiles.

−3 −2 −1 0 1 2 3

−
0.

4
0.

0
0.

4
0.

8

Normal Q−Q Plot of β̂10

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

Normal Q−Q Plot of β̂11

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

0.
0

1.
0

2.
0

3.
0

Normal Q−Q Plot of β̂20

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

−
2

0
1

2
3

4

Normal Q−Q Plot of β̂21

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Fig 1. Q-Q Plots for the Case when Sample Size = 100.

5. Conclusion. The GTM is motivated by the need for modeling the
dynamics of outbreaks of plague caused by the bacterium Yersinia pestis in
humans in Kazakhstan. It is of interest to explain the sporadic occurrences of
plague in humans using the information provided from systematic sampling
of fleas and rodents during the study period. In particular, Samia et al.
[18] showed that a sufficient number of viable fleas has to be achieved in
order for the major human outbreaks to occur. However, below the critical
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Sample % of % of Parameter Estimates Coverage Probability of

Size d̂ = 0 (in %) Failures (in %) r̂ β̂10 β̂11 β̂20 β̂21 β10 β11 β20 β21

50 77.5 1.1 0.376 0.350 1.04 1.54 0.422 0.929 0.926 0.942 0.945
sd 0.0200 0.522 0.752 0.572 1.31

bias -0.00371 -0.0504 0.0386 0.0413 -0.0780

100 97.7 0.8 0.379 0.376 1.0086 1.52 0.469 0.956 0.958 0.960 0.962
sd 0.00830 0.209 0.327 0.411 0.906

bias -0.00115 -0.0241 0.00862 0.0164 -0.0312

200 99.9 0.5 0.379 0.392 1.003 1.51 0.484 0.948 0.949 0.948 0.952
sd 0.00389 0.153 0.234 0.317 0.698

bias -0.000678 -0.00830 0.00259 0.00824 -0.0164

True 0.38 0.40 1.0 1.5 0.50

Table 1. Results of the Simulation Study.
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threshold which is a proxy to the number of viable fleas in the area, sporadic
cases of human plague outbreaks may occur. These findings are linked to the
classical theory of the basic reproductive ratio. For further developments of
this application, see Samia et al. [18].

In addition, the GTM is useful in modeling many other biological systems
that undergo different dynamics; e.g. climate changes, Chitty hypothesis
(Krebs [10]). The usefulness of the GTM can be widely adapted for use
in diverse fields including natural sciences, marketing, economics, political
science, and business.

An interesting future research problem is to allow the dispersion param-
eter φ to be regime-dependent, which introduces conditional heteroscedas-
ticity in the GTM.

APPENDIX A: PROOFS

A.1. Proof of Lemma 3.1.

Proof. Without loss of generality, the delay parameter d is assumed to
be known and d = 0. The proof can be easily extended to the general case
where d is unknown and 0 ≤ d ≤ D, D being a known upper bound of
the delay parameter. The parameter vector becomes θ = (β

′

1, β
′

2, r)
′
, and

the true parameter is denoted by θ0 = (β
′

1,0, β
′

2,0, r0)
′
. Let l(θ) be the log

likelihood of θ. For ease of exposition, we first impose the restriction that
r ≥ r0. The proof for the case r ≤ r0 is similar and hence is omitted. We
have

(A.1)
l(θ) − l(θ0)

T
= R1,t +R2,t +R3,t,

where

R1,t =
1

T

T
∑

t=1

1

φat

{

(β1 − β1,0)
′
xtyt − b(β

′

1xt) + b(β
′

1,0xt)
}

× I(zt ≤ r0),

(A.2)

R2,t =
1

T

T
∑

t=1

1

φat

{

(β1 − β2,0)
′
xtyt − b(β

′

1xt) + b(β
′

2,0xt)
}

× I(r0 < zt ≤ r),

(A.3)

R3,t =
1

T

T
∑

t=1

1

φat

{

(β2 − β2,0)
′
xtyt − b(β

′

2xt) + b(β
′

2,0xt)
}

× I(zt > r).

(A.4)
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Our proof relies on verifying the following two claims.
Claim 1: There exists M > 0 such that, for T sufficiently large, θ̂T lies in

(A.5) C1 = {θ ∈ Ω : |β1 − β1,0| ≤M, |β2 − β2,0| ≤M} a.s.

Claim 2: There exists ∆ > 0 such that, for T sufficiently large, θ̂T lies in

(A.6) C2 = {θ ∈ C1 : |r − r0| ≤ ∆} a.s.

Throughout the proof, the uniform law of large numbers will be applied
a number of times, the validity of which can be routinely checked using
Theorem 2 of Pollard [15, p. 8]. Although Pollard [15] assumes that the
data are independent and identically distributed, this assumption can be
relaxed to assuming a stationary ergodic process; see Pollard [15, p. 9]. A
prototype of such checking is given at the end of the proof of Claim 2.

Verification of Claim 1: It suffices to show that for T sufficiently large

and uniformly for θ /∈ C1, we have l(θ)−l(θ0)
T < 0 almost surely. Without

loss of generality, we consider the case that r ≥ r0 as the case r ≤ r0 can
be similarly dealt with. Note that {θ /∈ C1} can be written as the union of
A1,A2, and A3, where for some M > 0 and ∆ > 0 (to be determined), we
have

A1 = {θ : |β1| + |β2| ≥M, r0 ≤ r ≤ r0 + ∆};(A.7)

A2 = {θ : |β1| ≥M, r ≥ r0 + ∆};(A.8)

A3 = {θ : |β1| ≤M, |β2| ≥M, r ≥ r0 + ∆}.(A.9)

Consequently, the proof of Claim 1 is divided into the following three cases,
namely θ ∈ Ai, i = 1, 2, 3.

Let θ ∈ A1 = {θ : |β1| + |β2| ≥ M, r0 ≤ r ≤ r0 + ∆}. It suffices to show

that for T sufficiently large and uniformly for θ ∈ A1, we have l(θ)−l(θ0)
T < 0

almost surely. Let ν(β) = β
|β| ; i.e. ν(β) is on the boundary of the unit sphere

centered at the origin. By expanding R1,t defined by (A.2) in a Taylor series
expansion around β

′

1,0xt, we have

R1,t ≤ |β1 − β1,0|
1

T

T
∑

t=1

1

φat
ν(β1 − β1,0)

′
xt{yt − ḃ(β

′

1,0xt)}I(zt ≤ r0)

− |β1 − β1,0|2
1

T

T
∑

t=1

1

2φat
{ν(β1 − β1,0)

′
xt}2b̈(κ1,t)I(zt ≤ r0),

for some κ1,t between β
′

1xt and β
′

1,0xt. Without loss of generality, suppose

that b̈(β
′

1,0xt + v) ≥ b̈(β
′

1,0xt) for all v ≥ 0. Then, because b̈(.) is a strictly
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positive function, we get

R1,t ≤ |β1 − β1,0|
1

T

T
∑

t=1

1

φat
ν(β1 − β1,0)

′
xt{yt − ḃ(β

′

1,0xt)}I(zt ≤ r0)

− |β1 − β1,0|2
1

T

T
∑

t=1

1

2φat
{ν(β1 − β1,0)

′
xt}2b̈(β

′

1,0xt)

I{ν(β1 − β1,0)
′
xt ≥ 0}I(zt ≤ r0).

Similarly, expand R2,t and R3,t in a Taylor series around β
′

2,0xt.
Then, by applying the uniform law of large numbers, for all ε > 0, it holds

almost surely that, for T sufficiently large and uniformly for |β1| + |β2| ≥
M, r0 ≤ r ≤ r0 + ∆, we have

l(θ) − l(θ0)

T
≤ (|β1 − β1,0| + |β1 − β2,0| + |β2 − β2,0|) ε

+
(

|β1 − β1,0|2 + |β1 − β2,0|2 + |β2 − β2,0|2
)

(ρ+ ε),(A.10)

where

ρ = max
β1,β2,r

J(β1, β2, r),(A.11)

where the maximum is taken over all β1, β2, r such that |ν(β1 − β1,0)| =
|ν(β1 − β2,0)| = |ν(β2 − β2,0)| = 1 and r0 ≤ r ≤ r0 + ∆, and with

J(β1, β2, r) =
(

E

[

− 1

2φat
{ν(β1 − β1,0)

′
xt}2b̈(β

′

1,0xt)I{ν(β1 − β1,0)
′
xt ≥ 0}I(zt ≤ r0)

]

,

E

[

− 1

2φat
{ν(β1 − β2,0)

′
xt}2b̈(β

′

2,0xt)I{ν(β1 − β2,0)
′
xt ≥ 0}I(r0 < zt ≤ r)

]

,

E

[

− 1

2φat
{ν(β2 − β2,0)

′
xt}2b̈(β

′

2,0xt)I{ν(β2 − β2,0)
′
xt ≥ 0}I(zt > r)

])

.

Each component of J(β1, β2, r) is continuous for every θ and attains its
maximum on a compact set given by {|ν(β1 − β1,0)| = |ν(β1 − β2,0)| =
|ν(β2 − β2,0)| = 1, r0 ≤ r ≤ r0 + ∆}. Because the marginal probability
density function of xt is assumed to be positive everywhere, and since b̈(.) >
0, then ρ is strictly negative. We conclude that, for T sufficiently large
and for sufficiently large M , and uniformly for r0 ≤ r ≤ r0 + ∆, we have
l(θ)−l(θ0)

T < 0 almost surely. The latter result holds by fixing ε = −ρ
8 in

which case the right-hand side of the inequality in (A.10) is strictly negative.
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This can be seen by letting A = |β1 − β1,0| + |β1 − β2,0| + |β2 − β2,0| and
B = |β1 − β1,0|2 + |β1 − β2,0|2 + |β2 − β2,0|2 and by making use of Cauchy-
Schwartz inequality where A ≤

√
3
√
B ≤ 3B for sufficiently large M, and

after routine algebra.
Employing similar arguments and techniques when θ ∈ A2 and θ ∈ A3,

it is readily checked that Claim 1 holds.
Verification of Claim 2: Let θ ∈ A4 = {θ : |β1| + |β2| ≤ M, r ≥ r0 +

∆,M > 0,∆ > 0}. Applying the uniform law of large numbers to (A.1), we
conclude that, it holds almost surely that, for all ε > 0, for T sufficiently
large, and uniformly for r ≥ r0 + ∆ and |β1| + |β2| ≤M, we have

l(θ) − l(θ0)

T

≤ E

[

1

φat

{

(β1 − β1,0)
′
xtyt − b(β

′

1xt) + b(β
′

1,0xt)
}

× I(zt ≤ r0)

]

+E

[

1

φat

{

(β1 − β2,0)
′
xtyt − b(β

′

1xt) + b(β
′

2,0xt)
}

× I(r0 < zt ≤ r)

]

+E

[

1

φat

{

(β2 − β2,0)
′
xtyt − b(β

′

2xt) + b(β
′

2,0xt)
}

× I(zt > r)

]

+ ε.

Thus, using the result of Kullback-Leibler divergence stated in Lemma
5.35 of van der Vaart [24], for all ε > 0, it holds almost surely that, for T
sufficiently large and for any fixed ∆ > 0, and uniformly for r ≥ r0 + ∆ and
|β1| + |β2| ≤M, we have l(θ)−l(θ0)

T ≤ κ+ ε, where

κ = max
|β1|+|β2|≤M,r≥r0+∆

H(β1, β2, r)

and

H(β1, β2, r)

= E

[

1

φat

{

(β1 − β1,0)
′
xtyt − b(β

′

1xt) + b(β
′

1,0xt)
}

× I(zt ≤ r0)

]

+E

[

1

φat

{

(β1 − β2,0)
′
xtyt − b(β

′

1xt) + b(β
′

2,0xt)
}

× I(r0 < zt ≤ r)

]

.

Note that κ < 0. To see this, observe that H(β1, β2, r) can be extended con-
tinuously to H(β1, β2,∞) = limr→∞H(β1, β2, r), by the dominated conver-
gence theorem. (When r = ∞, the model becomes a generalized linear model
with β2 being absent from the model.) Hence, {|β1| + |β2| ≤M, r ≥ r0 + ∆}
is a compact set of the extended parameter space <2p ×<, where < = < ∪
{−∞,+∞} is equipped with the metric d(x, y) = |arctan(x) − arctan(y)| .
Thus, H(β1, β2, r) is continuous for every θ and attains its maximum on
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a compact set. Using the result of Kullback-Leibler divergence stated in
Lemma 5.35 of van der Vaart [24], and because of the model assumption
that β1,0 6= β2,0, we note that H(β1, β2, r) and H(β1, β2,∞) are < 0; and
hence, κ < 0. Choose ε = −κ

2 , so that it holds almost surely that, for T
sufficiently large and for any fixed ∆ > 0, and uniformly for r ≥ r0 +∆, and
|β1| + |β2| ≤M, l(θ)−l(θ0)

T ≤ κ
2 < 0.

Finally, we check the approximating conditions of the uniform law of
large numbers in Theorem 2 of Pollard [15, p. 8], applied in the proof of
Claim 2. Although Pollard [15] assumes that the data are independent and
identically distributed, this assumption can be relaxed to assuming a sta-
tionary ergodic process; see Pollard [15, p. 9]. A prototype of such checking
is given below for the class H of functions of the form h = hβ1,r(at, xt, yt) =
1

φat

{

(β1 − β2,0)
′
xtyt − b(β

′

1xt) + b(β
′

2,0xt)
}

× I(r0 < zt ≤ r).

Let F be the collection of all indicator functions of the form f = fr(at, xt,
yt) = V I(r0 < zt ≤ r), where V = V (at, xt, yt) ≥ 1 is a fixed func-
tion and E(V ) < ∞, and with r ranging over <. Note that 1

T

∑T
t=1 f =

1
T

∑T
t=1 V I(r0 < zt ≤ r) is a non-decreasing function of r; and for fixed

r, 1
T

∑T
t=1 f converges to E(f) wich is also a non-decreasing function of

r. Also, limr→∞E(f) = E {V I(zt > r0)} ≤ E(V ). Therefore, we consider
brackets of the form [fε,L, fε,U ] such that fε,L = V I(r0 < zt ≤ r∗i−1) and
fε,U = V I(r0 < zt < r∗i ), for a grid of points r0 = r∗0 < r∗1 < · · · < r∗k = ∞,
with the property E(fε,U − fε,L) = ε

2 < ε for each i. Thus, the total number

of brackets can be chosen to be k = 2E(V )
ε . These brackets have L1(P )-size

ε. Note that the collection of functions of the form I(r0 < zt ≤ r) is a special
case of F ; and hence, it satisfies the finite bracketing condition.

On the other hand, let G be the collection of functions of the form g =

gβ1
(at, xt, yt) = 1

φat

{

(β1 − β2,0)
′
xtyt − b(β

′

1xt) + b(β
′

2,0xt)
}

, where |β1| ≤
M. Because of the Lipschitz property of b stated in (C5), it is easy to check
that G has an integrable envelope function G given by 1

|φ||at|
{M |xt||yt| +

|β′

2,0xt||yt| + m̃(xt)(M + |β2,0|), for |β1| ≤ M, M > 0, and for m̃ defined
in (C5). Therefore, for each ε > 0, it can be easily shown that there exists
a finite class Gε containing lower and upper approximations to each g =
gβ1

(at, xt, yt) ∈ G, for which gε,L ≤ g ≤ gε,U and E(gε,U − gε,L) < ε.
Now, consider the class H = GF of functions of the form h = gf, where

g = 1
φat

{(β1− β2,0)
′
xtyt − b(β

′

1xt) + b(β
′

2,0xt)
}

, and f = I(r0 < zt ≤ r).

Note that h = gf = (g+−g−)f, where g+ = max(0, g) and g− = max(0,−g).
Because G is a class of functions that satisfies the finite bracketing conditions
of Theorem 2 in Pollard [15, p. 8], it is easy to check that G+ = {g+ : g+ =
max(0, g)} and G− = {g− : g− = max(0,−g)} also satisfy the finite bracket-
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ing conditions. Therefore, since g = g+ − g−, without loss of generality, we
assume that g ≥ 0. Then, for each h ∈ H, we have hε,L ≤ h ≤ hε,U , where
hε,L = gε,Lfε,L and hε,U = gε,Ufε,U . Using the triangle inequality, it follows
that for each h ∈ H, we have

E (hε,U − hε,L) = E (gε,Ufε,U − gε,Ufε,L + gε,Ufε,L − gε,Lfε,L)

= E {gε,U(fε,U − fε,L) + (gε,U − gε,L)fε,L}
≤ E {G(fε,U − fε,L)} + E(gε,U − gε,L),

where G ≥ 1 is an integrable envelope function of g. Making use of the
above findings, we conclude that, for each ε > 0, there exists a finite class
Hε containing lower and upper approximations to each h ∈ H, for which
hε,L ≤ h ≤ hε,U and E(hε,U − hε,L) < 2ε. Therefore, we can apply the

uniform law of large numbers to

∑T

t=1
h

T , h ∈ H.

A.2. Proof of Theorem 3.1.

Proof. Let l(θ) be the log likelihood of θ = (β
′

1, β
′

2, r, d)
′
. The true pa-

rameter is denoted as θ0 = (β
′

1,0, β
′

2,0, r0, d0)
′
. We first need to show that, as

T → ∞,

sup
θ∈Ω1

∣

∣

∣

∣

l(θ)

T
− E

(

l(θ)

T

)∣

∣

∣

∣

→ 0, almost surely.

The latter result holds if the approximating conditions of the uniform law of
large numbers in Theorem 2 of Pollard [15, p. 8] are verified. Although Pol-
lard [15] assumes that the data are independent and identically distributed,
this assumption can be relaxed to assuming a stationary ergodic process;
see Pollard [15, p. 9].

We have

l(θ)

T
=

1

T

T
∑

t=1

1

φat
{ytγt − b(γt)} + c (yt, φat)

=
1

T

T
∑

t=1

[

1

φat

{

w(β
′

1xt)yt − b ◦ w(β
′

1xt)
}

]

I(zt−d ≤ r)

+

[

1

φat

{

w(β
′

2xt)yt − b ◦ w(β
′

2xt)
}

]

I(zt−d > r) + c (yt, φat) .

Let G be the collection of functions of the form gβ1
(at, xt, yt) = 1

φat

{

w(β
′

1xt)

yt − b ◦ w(β
′

1xt)
}

, where β1 lies in a compact space. Because of the Lipschitz
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property of w and b◦w stated in (C5), it is easy to check that G has an inte-
grable envelope functionG given by 1

φat
[{|w(0)| + w̃(xt)M} |yt| + |b {w(0)}|

+m̃(xt)M ] , for |β1| ≤ M, M > 0, and for w̃ and m̃ defined in (C5). Us-
ing a similar argument as in the proof of Lemma 3.1 where we check the
validity of the uniform law of large numbers, we conclude that as T → ∞,

supθ∈Ω1

∣

∣

∣

l(θ)
T − E

(

l(θ)
T

)∣

∣

∣ → 0 almost surely.

Using the result of Kullback-Leibler divergence stated in Lemma 5.35 of

van der Vaart [24], and because E
(

l(θ)
T

)

is continuous for every θ ∈ Ω1, a

compact subset, then for all ε > 0, there exists δ > 0 such that

(A.12) max
θ∈Ω1:|θ−θ0|≥ε

E

(

l(θ)

T

)

+ δ < E

(

l(θ0)

T

)

− δ.

Applying the uniform law of large numbers and by making use of (A.12),
we conclude that, for all ε > 0, there exists δ > 0 such that, for T sufficiently

large, and uniformly for |θ − θ0| ≥ ε, l(θ)
T ≤ E

(

l(θ)
T

)

+ δ ≤ maxθ∈Ω1:|θ−θ0|≥ε

E
(

l(θ)
T

)

+ δ < E
(

l(θ0)
T

)

− δ < l(θ0)
T almost surely. Hence, for T sufficiently

large,
∣

∣

∣θ̂T − θ0
∣

∣

∣ ≤ ε almost surely. As ε > 0 is arbitrary, θ̂T → θ0 almost

surely. This completes the proof.

A.3. Proof of Theorem 3.2.

Proof. Without loss of generality, the delay parameter d is assumed
to be known, and d = 0. Therefore, the parameter vector becomes θ =
(β

′

1, β
′

2, r)
′

and the parameter space Ω is modified accordingly. Since the
maximum likelihood estimator θ̂T is strongly consistent, without loss of
generality, the parameter space can be restricted to a neighborhood of
θ0, namely, Ω1 = {θ ∈ Ω : |βi − βi,0| < ∆, i = 1, 2; |r − r0| < ∆} , for some
0 < ∆ < 1 to be determined later. To simplify the notation, we assume that
r0 = 0. Then, it suffices to show that for all ε > 0, there exists K > 0 such
that, with probability greater than 1 − ε, θ ∈ Ω1 and |r| > K

T implies that
l(β1, β2, r) − l(β1, β2, 0) < 0.
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We first consider the case that r > 0. Then, we have

l(β1, β2, r) − l(β1, β2, 0)

T

=
1

T

T
∑

t=1

[

1

φat

{

w(β
′

1xt)yt − b ◦ w(β
′

1xt)
}

+ c (yt, φat)

]

I(zt ≤ r)

+

[

1

φat

{

w(β
′

2xt)yt − b ◦ w(β
′

2xt)
}

+ c (yt, φat)

]

I(zt > r)

−
[

1

φat

{

w(β
′

1xt)yt − b ◦ w(β
′

1xt)
}

+ c (yt, φat)

]

I(zt ≤ 0)

−
[

1

φat

{

w(β
′

2xt)yt − b ◦ w(β
′

2xt)
}

+ c (yt, φat)

]

I(zt > 0)

=
1

T

T
∑

t=1

1

φat

[{

w(β
′

1xt) − w(β
′

2xt)
}

yt − b ◦ w(β
′

1xt) + b ◦ w(β
′

2xt)
]

× I(0 < zt ≤ r).

And hence,

l(β1, β2, r) − l(β1, β2, 0)

T

=
1

T

T
∑

t=1

1

φat

[{

w(β
′

1xt) − w(β
′

1,0xt)
}

yt − b ◦ w(β
′

1xt) + b ◦ w(β
′

1,0xt)
]

× I(0 < zt ≤ r)

+
1

T

T
∑

t=1

1

φat

[{

w(β
′

2,0xt) − w(β
′

2xt)
}

yt − b ◦ w(β
′

2,0xt) + b ◦ w(β
′

2xt)
]

× I(0 < zt ≤ r)

+
1

T

T
∑

t=1

1

φat

[{

w(β
′

1,0xt) − w(β
′

2,0xt)
}

yt − b ◦ w(β
′

1,0xt) + b ◦ w(β
′

2,0xt)
]

× I(0 < zt ≤ r).

Define Q(r) = E {I(0 < zt ≤ r)} , for 0 < r ≤ ∆. Let Mβ(at, xt, yt) =
1

φat
{γtyt −b(γt)} , where γt = w(β

′
xt). Recall that, by Assumption (C5),

there exists an integrable function Λ(at, xt, yt) such that |Mβ(at, xt, yt) −
Mβ∗(at, xt, yt)| ≤ Λ(at, xt, yt) |β −β∗| , for every β, β∗, at, xt, and yt.
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Thus, for ∆ > 0, we have

l(β1, β2, r) − l(β1, β2, 0)

TQ(r)

=
1

TQ(r)

T
∑

t=1

{

Mβ1
(at, xt, yt) −Mβ1,0

(at, xt, yt)
}

I(0 < zt ≤ r)

+
{

Mβ2,0
(at, xt, yt) −Mβ2

(at, xt, yt)
}

I(0 < zt ≤ r)

+
{

Mβ1,0
(at, xt, yt) −Mβ2,0

(at, xt, yt)
}

I(0 < zt ≤ r)

≤ (|β1 − β1,0| + |β2 − β2,0|)
1

TQ(r)

T
∑

t=1

Λ(at, xt, yt)I(0 < zt ≤ r)

+
1

TQ(r)

T
∑

t=1

{

Mβ1,0
(at, xt, yt) −Mβ2,0

(at, xt, yt)
}

I(0 < zt ≤ r).

Suppose that the following claim is valid; the verification of which is
deferred to the end of this proof.

Claim I. Let Mt be a measurable function of (at, x
′

t, yt)
′
. Assume that

there exist M > 0 and ∆ > 0, such that E
(

M2
t |zt = z

)

≤ M, for all z ∈
[−∆,∆]. Assume that the process W =

[

{Mt, ztI (−∆ ≤ zt ≤ ∆)}′
]

is ϕ-

mixing with exponentially decaying mixing coefficients. Then, for all ε > 0,
for all ζ > 0, there exists K > 0 such that, for all T,

(A.13) P



 sup
K
T

<r≤∆

∣

∣

∣

∣

∑ I(0 < zt ≤ r)

TQ(r)
− 1

∣

∣

∣

∣

< ζ



 > 1 − ε,

and
(A.14)

P



 sup
K
T

<r≤∆

∣

∣

∣

∣

∑ MtI(0 < zt ≤ r) − E {MtI(0 < zt ≤ r)}
TQ(r)

∣

∣

∣

∣

< ζ



 > 1 − ε.

It follows from Claim I that for all ε > 0, ζ > 0, there exist K(ε, ζ) > 0,
such that with probability greater than 1 − ε, K

T < r ≤ ∆ implies that

(A.15)
l(β1, β2, r) − l(β1, β2, 0)

TQ(r)
< (|β1 − β1,0| + |β2 − β2,0|) (ζ+M)+ζ+κ,

where

κ =
1

TQ(r)

T
∑

t=1

E
{

Mβ1,0
(at, xt, yt) −Mβ2,0

(at, xt, yt)|zt
}

I(0 < zt ≤ r).

(A.16)
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Because of Assumptions (C1) and (C8), and using the result of Kullback-
Leibler divergence stated in Lemma 5.35 of van der Vaart [24], we have

that for each zt ∈ (0,∆], E
{

Mβ1,0
(at, xt, yt) −Mβ2,0

(at, xt, yt)|zt
}

is a con-

tinuous function and is negative; and hence, its maximum is ≤ −χ, for
some χ > 0. Hence, κ ≤ −χ

TQ(r)

∑T
t=1 I(0 < zt ≤ r) ≤ −χ(1 − ζ), for some

χ > 0. Consequently, for all ε > 0, ζ > 0, there exist K(ε, ζ) > 0, χ > 0,
such that with probability greater than 1 − ε, K

T < r ≤ ∆ implies that
l(β1,β2,r)−l(β1,β2,0)

TQ(r) < 2∆(ζ + M) + ζ − χ(1 − ζ). Now, choose ∆ > 0 and

ζ > 0 such that 2∆(ζ + M) + ζ − χ(1 − ζ) < 0; and hence the validity of
Theorem 3.2 under the further condition that r > 0. Similar argument can
be used to prove Theorem 3.2 for the case of r < 0.

We now verify Claim I. Define

QT (r) =
∑ I(0 < zt ≤ r)

T
,(A.17)

RT (r) =
∑ MtI(0 < zt ≤ r)

T
,(A.18)

R̃T (r1, r2) =
∑ MtI(r1 < zt ≤ r2)

T
.(A.19)

By choosing ∆ sufficiently small, it follows from Assumption (C3) that
there exist 0 < m < M <∞, independent of T, such that for all r in (0,∆),

(A.20) mr ≤ Q(r) ≤Mr.

Since E {I(0 < zt ≤ r)} = E
{

I(0 < zt ≤ r)2
}

= Q(r), then we have, for
all r in (0,∆), var {I(0 < zt ≤ r)} = Q(r) − Q(r)2 = Q(r) {1 −Q(r)} ≤
Q(r)(1 −mr). And hence, for sufficiently small ∆ > 0, there exists H > 0,
independent of T, such that for all r in (0,∆),

(A.21) var {I(0 < zt ≤ r)} ≤ HQ(r).

Because E
(

M2
t |zt

)

is assumed to be bounded above for all zt ∈ [−∆,∆], it
is readily checked that there exists H > 0, independent of T, such that for
all r1, r2 in (0,∆),

(A.22) E {MtI(r1 < zt ≤ r2)} ≤ H {Q(r2) −Q(r1)} .

Similarly, var {MtI(r1 < zt ≤ r2)} ≤ E
{

M2
t I(r1 < zt ≤ r2)

}

≤ E
{

E
(

M2
t |

zt) I(r1 < zt ≤ r2)} ; and hence,

(A.23) var {MtI(r1 < zt ≤ r2)} ≤ H {Q(r2) −Q(r1)} .
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Let Rt = MtI(r1 < zt ≤ r2). Because the process W = [{Mt, ztI (−∆ ≤
zt ≤ ∆)}′

]

is ϕ-mixing, then |Cov(Rt, Rs)| ≤ 2ϕ
1

p

|t−s| {E(Rp
t )}

1

p {E(Rq
s)}

1

q ,

for any p, q ≥ 1 and 1
p + 1

q = 1; see Doukhan [5, p. 9]. Choose p = q = 2.
Because the ϕ-mixing coefficient is assumed to be exponentially decaying,
and by making use of the stationarity assumption, we have |Cov(Rt, Rs)| ≤
2cρ

|t−s|
2 E(R2

t ) ≤ 2cρ
|t−s|

2 H {Q(r2) −Q(r1)} , for some c > 0, 0 ≤ ρ < 1, and
H > 0. Hence, we make use of the latter inequality for the covariance of
ϕ-mixing random variables to verify that for all b > 0, there exists H > 0
such that for all r, r1, r2 ∈ [−b, b], for all T, we have

var {TQT (r)} ≤ THQ(r),(A.24)

var
{

TR̃T (r1, r2)
}

≤ TH {Q(r2) −Q(r1)} ,(A.25)

var {TRT (r)} ≤ THQ(r).(A.26)

Therefore, Claim I can be verified by making use of the inequalities
(A.20)–(A.26), and by employing arguments as in Chan [3, p. 529].

A.4. Proof of Lemma 3.2.

Proof. Let l(θ) be the log likelihood of θ = (δ
′
, r)

′
, where δ = (β

′

1, β
′

2)
′
.

Let l(., r) be globally maximized at δ̂r = (β̂
′

1,r, β̂
′

2,r)
′
. Since the maximum

likelihood estimator θ̂T is strongly consistent, without loss of generality,
the parameter space can be restricted to some neighborhood of θ0, say,
Ω1 = {θ ∈ Ω : |βi − βi,0| < 1, i = 1, 2; |r − r0| < 1} .

Let l̇(δ̂r0
, r) = ∂

∂δ l(δ, r)|δ=δ̂r0

and l̈(δ̂r0
, r) = ∂2

∂δ2 l(δ, r)|δ=δ̂r0

. Using a Tay-

lor’s expansion about δ̂r0
carried out to the third-order terms, there exists

δ̃ between δ and δ̂r0
such that

l(δ, r) − l(δ̂r0
, r)

= (δ − δ̂r0
)
′
l̇(δ̂r0

, r) +
1

2
(δ − δ̂r0

)
′
l̈(δ̂r0

, r)(δ − δ̂r0
) +RT (δ̃, δ, δ̂r0

),(A.27)

where the remainder term RT = RT (δ̃, δ, δ̂r0
) satisfies

(A.28) lim
T→∞

sup
|δ−δ̂r0

|→0

|RT |
T |δ − δ̂r0

|2
= 0.

For simplicity, we shall prove this lemma for the case that r ≥ r0 and omit
the case that r < r0 as the proof is similar.
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Since the score l̇(δ, r0) equals zero at δ = δ̂r0
, we have

l̇(δ̂r0
, r) = l̇(δ̂r0

, r) − l̇(δ̂r0
, r0)

=





∑T
t=1 Ṁβ̂1,r0

I(r0 < zt−d ≤ r)
∑T

t=1 −Ṁβ̂2,r0

I(r0 < zt−d ≤ r)





where Ṁβ̂i,r0

= ∂
∂βi
Mβi

|βi=β̂i,r0

and Mβi
= Mβi

(yt; at, xt) = 1
φat

{w(β
′

ixt)yt −
b ◦ w(β

′

ixt)}, i = 1, 2. Let l̇j(δ, r) denote the jth component of l̇(δ, r). Let k
be the dimension of δ. Denote the absolute norm of l̇(δ̂r0

, r) by |l̇(δ̂r0
, r)| =

∑k
j=1 |l̇j(δ̂r0

, r)|. Using (C3) and (D2), there exists a scalar M1 > 0 such that

for T sufficiently large, for allK > 0 and |r−r0| ≤ K
T , we have E(|l̇(δ̂r0

, r)|) =
∑2

i=1

∑T
t=1E{|Ṁβ̂i,r0

|I(r0 < zt−d ≤ r)} ≤ 2TM1P (r0 < zt−d ≤ r) = O(1).

It follows readily from Markov’s inequality that for T sufficiently large, for
all K > 0 and |r − r0| ≤ K

T , we have

(A.29) |l̇(δ̂r0
, r)| = Op(1).

On the other hand, the Hessian matrix l̈(δ̂r0
, r) can be written as

l̈(δ̂r0
, r) =

{

l̈(δ̂r0
, r) − l̈(δ̂r0

, r0)
}

+ l̈(δ̂r0
, r0)

=

[

η1 + ξ1 0
0 −η2 + ξ2

]

,(A.30)

where ηi =
∑T

t=1 M̈β̂i,r0

I(r0 < zt−d ≤ r), i = 1, 2, ξ1 =
∑T

t=1 M̈β̂1,r0

I(zt−d ≤

r0), ξ2 =
∑T

t=1 M̈β̂2,r0

I(zt−d > r0), and M̈β̂i,r0

= ∂2

∂β2
i

Mβi

∣

∣

∣

∣

βi=β̂i,r0

, i = 1, 2.

By employing a similar argument as above, it can be shown that for T
sufficiently large, for all K > 0 and |r − r0| ≤ K

T , we have

(A.31) |ηi| = Op(1), i = 1, 2.

In reference to Example 19.8 of van der Vaart [24], it can be easily shown
that the collection of functions {M̈β , β in a fixed compact set} is Glivenko-
Cantelli. Hence, using the argument of van der Vaart [24, p. 279], we have
for T sufficiently large,

1

T
ξ1 = E{M̈β1,0

I(zt−d ≤ r0)} + op(1),(A.32)

1

T
ξ2 = E{M̈β2,0

I(zt−d > r0)} + op(1);(A.33)
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where E{M̈β1,0
I(zt−d ≤ r0)} and E{M̈β2,0

I(zt−d > r0)} are negative-definite
by (D4), and they essentially determine the curvature of the log likelihood.

Combining the results in (A.31)–(A.33) with the result in (A.30), and
making use of the property that a negative-definite matrix has a maximum
eigenvalue that is less than −λ, for some λ > 0, it follows that for T suffi-
ciently large, for all K > 0 and |r − r0| ≤ K

T , we have

1

2
(δ − δ̂r0

)
′
l̈(δ̂r0

, r)(δ − δ̂r0
)

≤ 1

2

2
∑

i=1

{|βi − β̂i,r0
|2|ηi| + (βi − β̂i,r0

)
′
ξi(βi − β̂i,r0

)}

≤ 1

2

2
∑

i=1

|βi − β̂i,r0
|2[Op(1) − T{2λ− op(1)}],(A.34)

for some scalar λ > 0.
Finally, we combine the results in (A.28), (A.29), and (A.34) with the

result in (A.27). Then, for all ε > 0, aT = op(T
γ) > 0, where −1 < γ < −1

2 ,

|δ − δ̂r0
| < aT , ∀K > 0, and uniformly for |r− r0| ≤ K

T , there exists T0 such
that with probability greater than 1 − ε, for any T > T0, and for δ on the
boundary of the open sphere NaT

of radius aT centered at δ̂r0
, we have

l(δ, r) − l(δ̂r0
, r) ≤ aTOp(1) +

1

2
a2

T [Op(1) − T{2λ− op(1)}] + Ta2
T op(1)

≤ Ta2
T {−2λ+ op(1)},(A.35)

where −2λ+ op(1) < 0. Thus, l(δ, r) must attain a maximum at some point
belonging to NaT

. Because l(δ, r) is continuous for every θ ∈ Ω1, a compact
subset, then there exists a global maximum δ̂r = (β̂

′

1,r, β̂
′

2,r)
′

such that for
all K > 0,

sup
|r−r0|≤

K
T

|β̂i,r − β̂i,r0
| = op(1/

√
T ), i = 1, 2.

This completes the proof.

A.5. Proof of Lemma 3.3.

Proof. We use the same notations as in the proof of Lemma 3.2. For
simplicity, we shall prove this lemma for the case that κ ≥ 0 and omit the
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case that κ < 0 as the proof is similar. We have

l̃(κ) = {l(δ̂r0+ κ
T
, r0 + κ/T ) − l(δ̂r0+ κ

T
, r0)} + {l(δ̂r0+ κ

T
, r0) − l(δ̂r0

, r0)}

=
T

∑

t=1

(Mβ̂1,r0+ κ
T

−Mβ̂2,r0+ κ
T

)I(r0 < zt−d ≤ r0 + κ/T )(A.36)

+ (Mβ̂1,r0+ κ
T

−Mβ̂1,r0

)I(zt−d ≤ r0)(A.37)

+ (Mβ̂2,r0+ κ
T

−Mβ̂2,r0

)I(zt−d > r0).(A.38)

We first consider equation (A.36); we have

T
∑

t=1

(Mβ̂1,r0+ κ
T

−Mβ̂2,r0+ κ
T

)I(r0 < zt−d ≤ r0 + κ/T )

=
T

∑

t=1

(Mβ1,0
−Mβ2,0

)I(r0 < zt−d ≤ r0 + κ/T )

+ {(Mβ̂1,r0+ κ
T

−Mβ1,0
) + (Mβ2,0

−Mβ̂2,r0+ κ
T

)}I(r0 < zt−d ≤ r0 + κ/T ),

where
∑T

t=1(Mβ1,0
− Mβ2,0

)I(r0 < zt−d ≤ r0 + κ/T ) = l(δ0, r0 + κ/T ) −
l(δ0, r0). Hence,

∣

∣

∣

∣

∣

T
∑

t=1

(Mβ̂1,r0+ κ
T

−Mβ̂2,r0+ κ
T

)I(r0 < zt−d ≤ r0 + κ/T )

−{l(δ0, r0 + κ/T ) − l(δ0, r0)}
∣

∣

∣

∣

≤ (|β̂1,r0+ κ
T
− β1,0| + |β̂2,r0+ κ

T
− β2,0|)

×
T

∑

t=1

Λ(at, xt, yt)I(r0 < zt−d ≤ r0 + κ/T );(A.39)

the latter inequality holds because of (C5). Because E{Λ(at, xt, yt)I(r0 <
zt−d ≤ r0 + κ/T )} = O(1/T ), it follows that for T sufficiently large,

∑T
t=1 Λ

(at, xt, yt)I(r0 < zt−d ≤ r0 + κ/T ) = Op(1). On the other hand, for T
sufficiently large, for all K > 0 and uniformly for all |κ| ≤ K, it holds that
|β̂i,r0+ κ

T
−βi,0|, i = 1, 2, is less than or equal to |β̂i,r0+ κ

T
−β̂i,r0

|+|β̂i,r0
−βi,0| =

op(1/
√
T )+Op(1/

√
T ), using Lemma 3.2 and the property of the maximum

likelihood estimator of the GTM with known true delay and threshold. Thus,
for T sufficiently large, for all K > 0 and uniformly for all |κ| ≤ K, the
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inequality in (A.39) entails that
∣

∣

∣

∣

∣

T
∑

t=1

(Mβ̂1,r0+ κ
T

−Mβ̂2,r0+ κ
T

)I(r0 < zt−d ≤ r0 + κ/T )

−{l(δ0, r0 + κ/T ) − l(δ0, r0)}
∣

∣

∣

∣

= op(1).(A.40)

Next, we consider equation (A.37). Expand Mβ̂1,r0+ κ
T

and Mβ̂1,r0

in a

Taylor series around β1,0. We have

T
∑

t=1

(Mβ̂1,r0+ κ
T

−Mβ̂1,r0

)I(zt−d ≤ r0)

≤ (β̂1,r0+ κ
T
− β̂1,r0

)
′

T
∑

t=1

Ṁβ1,0
I(zt−d ≤ r0)

+
1

2
(β̂1,r0+ κ

T
− β̂1,r0

)
′

T
∑

t=1

M̈β1,0
I(zt−d ≤ r0)

× (β̂1,r0+ κ
T

+ β̂1,r0
− 2β1,0) + rT ,(A.41)

where the remainder term rT is such that for T sufficiently large, rT = op(1).

The central limit theorem is applied to the martingale
∑T

t=1

∑p
j=1 cjṀ

(j)
β1,0

×
I(zt−d ≤ r0), for all nonzero vectors of constants c = (c1, · · · , cp). Using
Cramer-Wold device, it follows that for all T sufficiently large, |∑T

t=1 Ṁβ1,0
×

I(zt−d ≤ r0)| = Op(
√
T ). The latter indeed holds because {Ṁβ1,0

(yt; at, xt)}
is a martingale-difference sequence with respect to the σ-algebra Ft =
σ(at, xt, yt−k, at−k, xt−k, k ≥ 1) and because E{Ṁβ1,0

Ṁ
′

β1,0
I(zt−d ≤ r0)} =

−E{M̈β1,0
I(zt−d ≤ r0)} is finite; see Billingsley [1]. On the other hand, by

the law of large numbers, for all T sufficiently large, 1
T

∑T
t=1 M̈β1,0

I(zt−d ≤
r0) converges to E{M̈β1,0

I(zt−d ≤ r0)} in probability. Thus, for all T suf-
ficiently large, for all K > 0 and uniformly for all |κ| ≤ K, the inequality
in (A.41) yields

∣

∣

∣

∣

∣

T
∑

t=1

(Mβ̂1,r0+ κ
T

−Mβ̂1,r0

)I(zt−d ≤ r0)

∣

∣

∣

∣

∣

≤ op(1/
√
T )Op(

√
T ) + op(1/

√
T )Op(T )Op(1/

√
T ) + op(1) = op(1),(A.42)

using Lemma 3.2. Similarly, it can be shown that for all T sufficiently large,
for all K > 0 and uniformly for all |κ| ≤ K, we have

∣

∣

∣

∣

∣

T
∑

t=1

(Mβ̂2,r0+ κ
T

−Mβ̂2,r0

)I(zt−d > r0)

∣

∣

∣

∣

∣

= op(1).(A.43)
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Combine the results in (A.40), (A.42), and (A.43) with the results in
(A.36)–(A.38) to complete the proof.

A.6. Proof of Theorem 3.3.

Proof. Owing to Lemma 3.3, we shall proceed as if l̃(κ) = l(δ0, r0 +
κ/T ) − l(δ0, r0). Without loss of generality, assume that d = 0 and κ > 0.
Then,

l̃(κ) =
T

∑

t=1

{Mβ1,0
(yt; at, xt) −Mβ2,0

(yt; at, xt)}I(r0 < zt ≤ r0 + κ/T ).

Let Ai be the event that the sample path of l̃(κ) possesses at least i
discontinuities on the interval (u, u + h], u ≥ 0, h ≥ 0, 0 ≤ i ≤ T. Hence,
by making use of (C3), it is easy to check that there exists M > 0 such
that P (A2) ≤

∑T
t1=1

∑T
t2=1, t2 6=t1 P (r0 + u

T < zt1 ≤ r0 + u+h
T , r0 + u

T < zt2 ≤
r0 + u+h

T ) ≤Mh2. Employing a similar argument as in the proof of Lemma
3.2 in Ibragimov and Has’minskii [8, p. 261], it can be readily checked that
({l̃(−κ), κ ≥ 0}, {l̃(+κ), κ ≥ 0}) is tight.

Let ε = 1
T > 0 and ξt = (at, x

′

t, yt)
′
. Define a piecewise-constant interpo-

lation process, xε(.), indexed by ε with paths in D[0, 1], as follows

xε(v) = Xε
[Tv], 0 ≤ v ≤ 1,

Xε
0 = 0, Xε

t+1 = Xε
t + Jε

t+1, t = 0, 1, 2, · · ·
Jε

t = {Mβ1,0
(yt; at, xt) −Mβ2,0

(yt; at, xt)}I(r0 < zt ≤ r0 + κε).(A.44)

Here, we denote by [·] the integer part of the expression inside the square
bracket. Note that xε(1) = l̃(κ) and {xε(v), 0 ≤ v ≤ 1} is tight in D[0, 1].
Furthermore, xε(v) = Xε

t , for v ∈ [tε, tε+ ε), t = 0, 1, · · · , T.
We now show that {xε(v), 0 ≤ v ≤ 1} converges weakly inD[0, 1] to {ρ(v),

0 ≤ v ≤ 1}, a compound Poisson process with rate π(r0)κ and the distri-
bution of jump same as the conditional distribution of Mβ1,0

(yt; at, xt) −
Mβ2,0

(yt; at, xt) given zt = r+0 . We do this by making use of Theorem 1
of Kushner [12] via operator convergence. By employing truncation argu-
ments as in Kushner [12], we can and will assume that xε are uniformly
bounded. First, we define some notations and the operators. Let Fv denote
an increasing sequence of σ-algebras to which {xε(u), u ≤ v} are adapted,
for all ε > 0. Let L denote the progressively measurable functions with
respect to Fv. Define L to be the subset of L for which supv E|f(v)| <
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∞. Let Eε
v denote the conditional expectation given F ε

v , which is the σ-
algebra generated by {xε(u), u ≤ v}. Note F ε

v is a subset of Fv. For f and
f δ ∈ L , define p-limδ→0 f

δ = f if and only if supv,δ E|f δ(v)| < ∞ and

limδ→0E|f δ(v) − f(v)| = 0 for every v. Define the p-infinitesimal operator
Âε by Âε : D(Âε) ⊆ L → L such that f ∈ D(Âε) and Âεf = g if and only
if for f, g ∈ L and adapted to {F ε

v} and g being p-right continuous, we have
p-limδ→0[

1
δ {Eε

vf(v+δ)−f(v)}−g(v)] = 0. Let Ĉ denote the space of contin-

uous bounded real-valued functions which are zero at infinity and Ĉ 2
0 be the

subset of Ĉ with compact support and continuous second derivative. Define
the operator A on Ĉ 2

0 by Af(w) = π(r0)κ
∫

{f(w + y) − f(w)}q(dy), where
q(dy) is the probability measure induced by the conditional distribution of
Mβ1,0

(yt; at, xt) −Mβ2,0
(yt; at, xt) given zt = r+0 .

Let f(.) ∈ Ĉ 2
0 . For every τε > 0, define f ε(v) = 1

τε

∫ τε

0 Eε
v{f(xε(v+ s))}ds.

Then, f ε is in D(Âε) with Âεf ε(v) = 1
τε

[Eε
v{f(xε(v + τε))} − f(xε(v))]; see

Kurtz [11, p. 625]. We next study the limiting behavior of Âεf ε. We have

Âεf ε(v) =
1

τε
[Eε

v{f(xε(v + τε))} − f(xε(v))]

=
1

τε

[T (v+τε)]−1
∑

k=[Tv]

Eε
v{f(Xε

k+1) − f(Xε
k)}

=
1

τε

[T (v+τε)]−[Tv]−1
∑

k=0

Eε
v{f(Xε

k+[Tv] + Jε
k+[Tv]+1) − f(Xε

k+[Tv])}.(A.45)

Because {xε(v), 0 ≤ v ≤ 1} is tight, any of its subsequence has a conver-
gent subsequence. With no loss of generality, assume that {xε(v), 0 ≤ v ≤ 1}
converges weakly to {x(v), 0 ≤ v ≤ 1} and, indeed, by enlarging the prob-
ability space, the convergence may and will be assumed to be almost sure
convergence. By making use of Theorem 15.3 in Billingsley [1, Equation
(15.8)], we claim that

Âεf ε(v) =
1

τε

[T (v+τε)]−[Tv]−1
∑

k=0

Eε
v{f(xε(v) + Jε

k+[Tv]+1) − f(xε(v))}

+ op(1),(A.46)

the verification of (A.46) is deferred to the end of the proof.
Let mε = [T (v + τε)] − [Tv]. Using the ϕ-mixing assumption in (C7) and
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the result in Theorem 2.2 of Serfling [19], we have, for any fixed X,

1

τε

mε−1
∑

k=0

E|Eε
v{f(X + Jε

k+[Tv]+1) − f(X)}

− E{f(X + Jε
k+[Tv]+1) − f(X)}|

≤ 1

τε

mε−1
∑

k=0

2
√

ϕ(k + 1)
√

E[{f(X + Jε
k+[Tv]+1) − f(X)}2]

≤ 1

τε
K1

√

P (zt ∈ (r0, r0 + κε])
mε−1
∑

k=0

√

ϕ(k + 1),(A.47)

for some K1 > 0; the last inequality is obtained by expanding f in a Taylor
series about X and by making use of the compact support of f and (C6).

Choose a sequence {τε} such that limε→0 τε = 0, limε→0mε = ∞, and
limε→0

√
Tτε = ∞, which holds if, for example, τε = T−1/3. Then, (A.46) and

(A.47) imply that Âεf ε(v) = Af(xε(v))+op(1). Therefore, {xε(v), 0 ≤ v ≤ 1}
converges weakly to the compound Poisson process {ρ(v), 0 ≤ v ≤ 1} which
is the unique solution to the martingale problem

f(x(t)) −
∫ t

0
Af(x(s))ds is a martingale,(A.48)

for any function f with compact support and continuous second derivative,
see Strook and Varadhan [21]. Consequently, l̃(κ) converges weakly to l̃2(κ).
Employing the Cramer-Wold device, similar arguments yield the convergence
of finite-dimensional distributions of ({l̃(−κ), κ ≥ 0}, {l̃(+κ), κ ≥ 0}) to
those of ({l̃1(κ), κ ≥ 0}, {l̃2(κ), κ ≥ 0}).

We complete the proof by verifying the claim in (A.46). By expanding
f in Taylor series and by letting ḟ(s) (f̈(s)) be the first (second) partial
derivative of f with respect to s, we have, by repeated use of the mean value
theorem,

Âεf ε(v) −Af(xε(v))

=
1

τε

mε−1
∑

k=0

Eε
v{f(xε(v + kε) + Jε

k+[Tv]+1) − f(xε(v) + Jε
k+[Tv]+1)}

− 1

τε

mε−1
∑

k=0

Eε
v{f(xε(v + kε)) − f(xε(v))}

=
1

τε

mε−1
∑

k=0

Eε
v[{ḟ(xε(v + kε) + χ1J

ε
k+[Tv]+1)

− ḟ(xε(v) + χ1J
ε
k+[Tv]+1)}Jε

k+[Tv]+1],(A.49)
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for some χ1 between 0 and 1. Therefore,

Âεf ε(v) −Af(xε(v))

=
1

τε

mε−1
∑

k=0

Eε
v[f̈(xε(v) + χ2(x

ε(v + kε) − xε(v)) + χ1J
ε
k+[Tv]+1)

× Jε
k+[Tv]+1 × {xε(v + kε) − xε(v)}],(A.50)

for some χ1 and χ2 between 0 and 1.
Denote 1

τε
[f̈(xε(v) + χ2(x

ε(v + kε) − xε(v)) + χ1J
ε
k+[Tv]+1) × Jε

k+[Tv]+1 ×
{xε(v+kε)−xε(v)}] by Bv,k. Let Hδ,η = {x : wx[v, v+ δ) ≤ η}, for all η > 0,
for 0 < δ < 1, and where wx is the modulus of continuity of x defined by
wx[v, v + δ) = sup0≤v≤1−δ |x(v+ δ)− x(v)|. The tightness of xε implies that
(c.f. Billingsley [1, Theorem 15.3]) for all positive η and τ , there exists a δ
such that for all ε sufficiently small, P (xε 6∈ Hδ,η) ≤ τ. Let I1 = I(xε ∈ Hδ,η)
and I2 = 1−I1 where I(·) is the indicator function. Hence, the last equation
in (A.50) can be decomposed as

mε−1
∑

k=0

Eε
v(Bv,kI1) +

mε−1
∑

k=0

Eε
v(Bv,kI2).(A.51)

Note that the first sum is bounded by ηK1
1
τε

∑mε−1
k=0 Eε

v(J
ε
k+[Tv]+1) for some

finite K1 > 0. Using similar arguments as above, it can be checked that
1
τε

∑mε−1
k=0 Eε

v(J
ε
k+[Tv]+1) is Op(1) for all sufficiently small ε. The fact that xε

are uniformly bounded by truncation argument and using Cauchy-Schwartz
inequality entail that, for some finite K2 > 0, the square of the second
sum in (A.51) is bounded by K2E

ε
v(I2)× 1

τε

∑mε−1
k=0 Eε

v{(Jε
k+[Tv]+1)

2}. Again

the second term in the preceding product can be shown to be Op(1) for all
sufficiently small ε. Because E{Eε

v(I2)} = E(I2) which is smaller than τ for
ε sufficiently small, Eε

v(I2) = τOp(1). As η and τ can be chosen arbitrarily
small, the claim follows. This completes the proof.

A.7. Proof of Theorem 3.4.

Proof. Because r̂ is T -consistent and by Lemma 3.2, it follows that r̂
and

√
T{(β̂1 − β1,0)

′
, (β̂2 − β2,0)

′}′
are asymptotically independent. More-

over, β̂i = β̂i,r̂ = β̂i,r0
+ op(1/

√
T ), i = 1, 2; hence, β̂i and β̂i,r0

enjoy the

same asymptotic distribution. But β̂i,r0
is the maximum likelihood esti-

mator of βi,0 when the threshold parameter is known, for i = 1, 2. Us-

ing Theorem 5.41 of van der Vaart [24], the sequence
√
T (δ̂r0

− δ0) =
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√
T{(β̂1,r0

− β1,0)
′
, (β̂2,r0

− β2,0)
′}′

is asymptotically normal with mean zero
and covariance matrix E(ψ̇δ0)

−1E(ψδ0ψ
′

δ0
)E(ψ̇δ0)

−1. From this follows the
result in Theorem 3.4.
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